Statistical Modelling for Dating Ice Cores

Katy Klauenberg, Paul G. Blackwell, Caitlin E. Buck
Department of Probability and Statistics, The University of Sheffield

Robert Mulvaney, Regine Röthlisberger*, Eric W. Wolff
British Antarctic Survey, Cambridge

* now at the Federal Office for the Environment, Bern
Content

- Introduction to Ice Core Dating
 - Ice Cores as Archives
 - Existing Dating methods

- A Bayesian Approach to Glaciological Modelling
 - Glaciological Model and its Uncertainty
 - Bayesian Framework
 - Block-Updating MCMC

- Results: Dating Uncertainty in a Toy Example

- Discussion
Introduction to Ice Core Dating

- Ice Cores – The Archive
- Existing Dating Methods

A Bayesian Approach to Glaciological Modelling

The Dating Uncertainty

Discussion
Ice Cores – The Archive

- Preserve valuable information about the climate and environment of the past
- Record chemical composition of snow, dust and atmospheric gases with high resolution for up to 700,000 years and longer [Parrenin et al., 2007]

Source: BAS image database
Ice Cores – The Archive

- Preserve valuable information about the climate and environment of the past
- Record chemical composition of snow, dust and atmospheric gases with high resolution for up to 700,000 years and longer [Parrenin et al., 2007]
- Dating is essential to interpret this information
- Dating: relate time to depth

![Isotopic Content of Ice vs Snow Depth](Source: BAS image database)
Ice Cores – The Archive

- Preserve valuable information about the climate and environment of the past
- Record chemical composition of snow, dust and atmospheric gases with high resolution for up to 700,000 years and longer [Parrenin et al., 2007]
- Dating is essential to interpret this information
- Dating: relate time to depth

Source: BAS image database
Existing Dating Methods

- layer counting using seasonality in signals

- glaciological modelling
 - model of accumulation: estimated from isotopic content of ice
 - model of mechanical processes after accumulation: i.e. snow densification, ice flow

- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insolation changes

- any combination of dating methods
Existing Dating Methods

- layer counting using seasonality in signals
- sufficient annual accumulation
- sufficient human resources for counting
- error accumulates

- glaciological modelling
 - model of accumulation:
 - estimated from isotopic content of ice
 - model of mechanical processes after accumulation:
 - i.e. snow densification, ice flow
 - poorly known parameters

- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insolation changes
 - uncertainty in other record
 - uncertainty in link between records

- any combination of dating methods
Existing Dating Methods

- layer counting using seasonality in signals
 sufficient annual accumulation
 sufficient human resources for counting
 error accumulates

- glaciological modelling
 - model of accumulation:
 - estimated from isotopic content of ice
 - model of mechanical processes after accumulation:
 - i.e. snow densification, ice flow
 - poorly known parameters

- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insolation changes
 - uncertainty in other record
 - uncertainty in link between records

- any combination of dating methods

⇒ quantify uncertainty in the accumulation model and derive
 the dating uncertainty incorporating other dating methods
Existing Dating Methods

- layer counting using seasonality in signals
 sufficient annual accumulation
 sufficient human resources for counting
 error accumulates

- glaciological modelling
 - model of accumulation:
 estimated from isotopic content of ice
 - model of mechanical processes after accumulation:
 i.e. snow densification, ice flow
 poorly known parameters

- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insolation changes
 uncertainty in other record
 uncertainty in link between records

- any combination of dating methods

⇒ quantify uncertainty in the accumulation model and derive
the dating uncertainty incorporating other dating methods
A Bayesian Approach to Glaciological Modelling

- Glaciological Model and its Uncertainty
- The Bayesian Approach
- Typical Set of Prior Assumptions
- Sampling from the Posterior
- Calculating the Marginal Posterior

The Dating Uncertainty

Discussion

A Bayesian Approach to Glaciological Modelling
Glaciological Model and its Uncertainty

Accumulation Model

chemical measurement: isotopic content of ice → annual accumulation rate → times covered by each slice of the core
Accumulation Model

chemical measurement: isotopic content of ice \rightarrow annual log-accumulation rate \rightarrow times covered by each slice of the core

$Y \rightarrow f(Y) \rightarrow T = \frac{g(D)}{ef(Y)}$

deformation of depths
Glaciological Model and its Uncertainty

Accumulation Model

chemical measurement: isotopic content of ice → annual log-accumulation rate → times covered by each slice of the core

\[Y \xrightarrow{} f(Y) \xrightarrow{} T = \frac{g(D)}{e^{f(Y)}} \]

Its Uncertainty

\[Y \xrightarrow{} f_\theta(Y) = A + \varepsilon \xrightarrow{} T = \frac{g(D)}{e^A} \]

‘true’ log-accumul. rates

‘observed’ log-accumul. rate

\(f \) involves uncertain parameters \(\theta \)

(model error)

(\text{inverse modelling: Parrenin et al., 2001})
The Bayesian Approach

Quantities of interest
- latent variable A
- parameters θ, σ (where $\varepsilon_i \sim N(0, \sigma^2)$ iid)

\[
f_\theta(Y) = A + \varepsilon
\]

\[
P(A, \theta, \sigma | \cdot)
\]
The Bayesian Approach

- Quantities of interest
 - latent variable A
 - parameters θ, σ (where $\varepsilon_i \sim N(0, \sigma^2)$ iid)
- Sources of information
 - ice core measurements Y (data)

$f_\theta(Y) = A + \varepsilon$

$$P(A, \theta, \sigma|Y),$$
The Bayesian Approach

- Quantities of interest
 latent variable A
 parameters θ, σ (where $\varepsilon_i \sim N(0, \sigma^2)$ iid)

- Sources of information
 ice core measurements Y (data)
 prior knowledge on quantities of interest
 - recent weather records: not applicable
 - layer counted ice cores
 - assume accumulation model f holds ‘globally’:
 fit a hierarchical linear model to 11 layer counted ice cores
 \rightarrow use results as priors for parameters θ and σ

\[
P(A, \theta, \sigma|Y) \propto P(f_\theta(Y)|A, \theta, \sigma)P(\sigma)P(\theta)P(A)
\]
The Bayesian Approach

\[f_\theta(Y) = A + \varepsilon \]

\[r^2 \text{ iid} \]

`est licable`

\[\text{holds `globally':} \]
\[\circ \text{11 layer counted ice cores} \]
\[\circ \text{ameters} \theta \text{ and} \sigma \]

\[P(A, \theta, \sigma | Y, \propto P(f_\theta(Y) | A, \theta, \sigma)P(\sigma)P(\theta)P(A) \]
The Bayesian Approach

\[f_\theta(Y) = A + \varepsilon \]

- **Quantities of interest**
 - latent variable \(A \)
 - parameters \(\theta, \sigma \) (where \(\varepsilon_i \sim N(0, \sigma^2) \) iid)

- **Sources of information**
 - ice core measurements \(Y \) (data)
 - prior knowledge on quantities of interest
 - recent weather records: not applicable
 - layer counted ice cores
 - assume accumulation model \(f \) holds ‘globally’:
 - fit a hierarchical linear model to 11 layer counted ice cores
 - use results as priors for parameters \(\theta \) and \(\sigma \)
 - use layer counting of top part as additional constraint

\[
P(A, \theta, \sigma | Y, L) \propto P(f_\theta(Y) | A, \theta, \sigma) P(\sigma) P(\theta) P(A) P(L | A)
\]
Typical Set of Prior Assumptions

Accumulation prior

\[A_i \sim N(-0.5, 1.5^2) \]
Typical Set of Prior Assumptions

Accumulation prior

- $A_i \sim \mathcal{N}(-0.5, 1.5^2)$

Accumulation model priors (f linear)

- $A_0 \sim \mathcal{N}(-0.79, 0.27^2)$
- Evidence from 11 cores

- $b \sim \mathcal{N}(0.027, 0.0037^2)$
- Evidence from 11 cores
Typical Set of Prior Assumptions

Accumulation prior

Accumulation model priors \((f \text{ linear}) \) [Johnsen et al., 1995]

- Accumulation prior
 \[A_i \sim N(-0.5, 1.5^2) \]

- Accumulation model priors
 \[A_0 \sim N(-0.79, 0.27^2) \]

 Evidence from 11 cores

- Model error prior
 \[\sigma \sim \Gamma(7355, 3.5\times10^{-05}) \]

 Evidence from 11 cores

Annual log–accum. rate \(A_i \) in m

Intercept \(A_0 \)

Slope \(b \)
Typical Set of Prior Assumptions

Accumulation prior

\[A_i \sim N(-0.5, 1.5^2) \]

Accumulation model priors (linear)

\[A_0 \sim N(-0.79, 0.27^2) \]

Evidence from 11 cores

\[b \sim N(0.027, 0.0037^2) \]

Evidence from 11 cores

Model error prior

\[\sigma \sim \Gamma(7355, 3.5e^{-0.05}) \]

Evidence from 11 cores

Layer counting likelihood

\[P(L_i - A_i | A_i) = \frac{9}{10} \cdot N(0, 0.11^2) + \frac{1}{20} \cdot N(\log(1.8), 0.11^2) + \frac{1}{20} \cdot N(\log(0.6), 0.11^2) \]
Sampling from the Posterior

- direct calculation of \(P(A, \theta, \sigma | Y, L) \) intractable
Sampling from the Posterior

- direct calculation of $P(A, \theta, \sigma|Y, L)$ intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
Sampling from the Posterior

- direct calculation of $P(A; \theta, \sigma|Y, L)$ intractable
- traditional MCMC sampling: single-site updating
 (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):
 1) θ
 2) σ
Sampling from the Posterior

- direct calculation of $P(A, \theta, \sigma | Y, L)$ intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):
 1) θ
 2) $A \sim P(A|\theta, \sigma, Y, L)$
Sampling from the Posterior

- direct calculation of \(P(A, \theta, \sigma | Y, L) \) intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):
 1) \(\theta^* \) from some symmetric proposal
 \(\sigma^* \) from some symmetric proposal
 2) \(A^* \sim P(A | \theta^*, \sigma^*, Y, L) \)
 3) accept jointly with probability \(\alpha = \min \left\{ 1, \frac{P(\theta^*, \sigma^* | Y, L)}{P(\theta, \sigma | Y, L)} \right\} \)
Sampling from the Posterior

- direct calculation of \(P(A, \theta, \sigma|Y, L) \) intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):

 1) \(\theta^* \) from some symmetric proposal
 \(\sigma^* \) from some symmetric proposal
 2) \(A^* \sim P(A|\theta^*, \sigma^*, Y, L) \)
 3) accept jointly with probability \(\alpha = \min \left\{ 1, \frac{P(\theta^*, \sigma^*|Y, L)}{P(\theta, \sigma|Y, L)} \right\} \)

where \(P(\theta, \sigma|Y, L) = \frac{P(A, \theta, \sigma|Y, L)}{P(A|\theta, \sigma, Y, L)} \)
Sampling from the Posterior

- direct calculation of $P(A, \theta, \sigma | Y, L)$ intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):
 1) θ^* from some symmetric proposal
 σ^* from some symmetric proposal
 2) $A^* \sim P(A | \theta^*, \sigma^*, Y, L)$
 3) accept jointly with probability $\alpha = \min \left\{ 1, \frac{P(\theta^*, \sigma^* | Y, L)}{P(\theta, \sigma | Y, L)} \right\}$
 where $P(\theta, \sigma | Y, L) = \frac{P(A, \theta, \sigma | Y, L)}{P(A | \theta, \sigma, Y, L)}$
 4) repeat steps 1) - 3)
Sampling from the Posterior

- direct calculation of $P(A, \theta, \sigma | Y, L)$ intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):
 1) θ^* from some symmetric proposal
 σ^* from some symmetric proposal
 2) $A^* \sim P(A | \theta^*, \sigma^*, Y, L)$
 3) accept jointly with probability $\alpha = \min \left\{ 1, \frac{P(\theta^*, \sigma^* | Y, L)}{P(\theta, \sigma | Y, L)} \right\}$
 where $P(\theta, \sigma | Y, L) = \frac{P(A, \theta, \sigma | Y, L)}{P(A | \theta, \sigma, Y, L)}$
 4) repeat steps 1) - 3)

\Rightarrow very efficient
Sampling from the Posterior

- direct calculation of $P(A, \theta, \sigma | Y, L)$ intractable
- traditional MCMC sampling: single-site updating (highly dependent parameters lead to bad performance)
- block-updating MCMC ([Rue and Held, 2005]):
 1) θ^* from some symmetric proposal
 σ^* from some symmetric proposal
 2) $A^* \sim P(A|\theta^*, \sigma^*, Y, L)$
 3) accept jointly with probability $\alpha = \min \left\{ 1, \frac{P(\theta^*, \sigma^* | Y, L)}{P(\theta, \sigma | Y, L)} \right\}$
 where $P(\theta, \sigma | Y, L) = \frac{P(A, \theta, \sigma | Y, L)}{P(A|\theta, \sigma, Y, L)}$
 4) repeat steps 1) - 3)

\Rightarrow very efficient
Calculating the Marginal Posterior

\[P(\mathbf{A}|\theta, \sigma, \mathbf{Y}, \mathbf{L}) \]

\[P(\mathbf{A}|\theta, \sigma, \mathbf{Y}, \mathbf{L}) \propto P(\mathbf{Y}|\mathbf{A}, \theta, \sigma)P(\mathbf{A}) \]
Calculating the Marginal Posterior

\[P(A|\theta, \sigma, Y, L) \]

\[P(A|\theta, \sigma, Y, L) \propto P(Y|A, \theta, \sigma)P(A) \]

\[\propto N_{f_\theta(Y)}(A, \sigma^2) N_A(\mu_A, \sigma^2_A) \]

\[\propto N_A\left(\frac{\mu_A\sigma^2 + f_\theta(Y)\sigma^2_A}{\sigma^2 + \sigma^2_A}, \frac{\sigma^2\sigma^2_A}{\sigma^2 + \sigma^2_A} \right) \]
Calculating the Marginal Posterior

\[
P(A|\theta, \sigma, Y, L)
\]

\[
P(A|\theta, \sigma, Y, L) \propto P(Y|A, \theta, \sigma)P(A)P(L|A)
\]

\[
\propto f_{\theta,Y}(A, \sigma^2) N_A(\mu_A, \sigma_A^2)
\]

\[
\propto N_A \left(\frac{\mu_A \sigma^2 + f_{\theta,Y}(Y) \sigma_A^2}{\sigma^2 + \sigma_A^2}, \frac{\sigma^2 \sigma_A^2}{\sigma^2 + \sigma_A^2} \right)
\]
Calculating the Marginal Posterior

\[P(A|\theta, \sigma, Y, L) \propto P(Y|A, \theta, \sigma)P(A)P(L|A) \]

\[\propto N_{f_\theta(Y)}(A, \sigma^2) N_A(\mu_A, \sigma_A^2) N_L(A, \sigma_L^2) \]

\[\propto N_A \left(\frac{\mu_A \sigma_A^2 + f_\theta(Y) \sigma_A^2}{\sigma^2 + \sigma_A^2}, \frac{\sigma^2 \sigma_A^2}{\sigma^2 + \sigma_A^2} \right) N_L(A, \sigma_L^2) \]
Calculating the Marginal Posterior

\[P(A | \theta, \sigma, Y, L) \propto P(Y | A, \theta, \sigma) P(A) P(L | A) \]

\[\propto N_{f_{\theta}(Y)}(A, \sigma^2) N_A(\mu_A, \sigma_A^2) N_L(A, \sigma_L^2) \]

\[\propto N_A \left(\frac{\mu_A \sigma^2 + f_{\theta}(Y) \sigma_A^2}{\sigma^2 + \sigma_A^2}, \frac{\sigma^2 \sigma_A^2}{\sigma^2 + \sigma_A^2} \right) N_L(A, \sigma_L^2) \]

\[\left\{ \begin{array}{l}
N_A \left(\frac{\mu_A \sigma^2 + f_{\theta}(Y) \sigma_A^2}{\sigma^2 + \sigma_A^2}, \frac{\sigma^2 \sigma_A^2}{\sigma^2 + \sigma_A^2} \right) \\
N_A \left(\frac{(\mu_A \sigma^2 + f_{\theta}(Y) \sigma_A^2) \sigma_L^2 + (L \sigma_A^2 + \sigma_A^2 \sigma_L^2)}{(\sigma^2 + \sigma_A^2) \sigma_L^2 + \sigma^2 \sigma_A^2}, \frac{\sigma^2 \sigma_A^2 \sigma_L^2}{(\sigma^2 + \sigma_A^2) \sigma_L^2 + \sigma^2 \sigma_A^2} \right)
\end{array} \right. \]

if no LC exists.

else
Calculating the Marginal Posterior

\[P(A|\theta, \sigma, Y, L) \propto P(Y|A, \theta, \sigma)P(A)P(L|A) \]

\[\propto N_{f_\theta(Y)}(A, \sigma^2)N_A(\mu_A, \sigma_A^2) \sum_{j=1}^{3} w_j N_L(A+a_i, \sigma_L^2) \]

\[\propto N_A \left(\frac{\mu_A \sigma^2 + f_\theta(Y) \sigma_A^2}{\sigma^2 + \sigma_A^2}, \frac{\sigma^2 \sigma_A^2}{\sigma^2 + \sigma_A^2} \right) \sum_{j=1}^{3} w_j N_L(A+a_i, \sigma_L^2) \]

\[\propto \left\{ \begin{array}{ll}
N_A \left(\frac{\mu_A \sigma^2 + f_\theta(Y) \sigma_A^2}{\sigma^2 + \sigma_A^2}, \frac{\sigma^2 \sigma_A^2}{\sigma^2 + \sigma_A^2} \right) & \text{if no LC exists,} \\
\sum_{j=1}^{3} N_A \left(\frac{(\mu_A \sigma^2 + f_\theta(Y) \sigma_A^2) \sigma_L^2 + (L-a_i) \sigma_A^2 \sigma^2}{(\sigma^2 + \sigma_A^2) \sigma_L^2 + \sigma_A^2 \sigma^2}, \frac{\sigma^2 \sigma_A^2 \sigma_L^2}{(\sigma^2 + \sigma_A^2) \sigma_L^2 + \sigma_A^2 \sigma^2} \right) & \text{else}
\end{array} \right. \]
The Dating Uncertainty
Dating Uncertainty in an Example

Toy example

A shallow core from Dyer Plateau, Antarctica ($70^\circ 39'S$, $65^\circ 01'W$)

Dating uncertainty

\[
\begin{align*}
\text{Estimated number of years} & \quad 0 & 20 & 40 & 60 & 80 \\
\text{Depth in m} & \quad 0 & 10 & 20 & 30 & 40 & 50
\end{align*}
\]

- 98.71 ± 6.02 years
- Block updating MCMC

(Rue and Held, 2005)
Toy example

A shallow core from Dyer Plateau, Antarctica (70°39’S, 65°01’W)

Dating uncertainty

![Graph showing estimated number of years versus depth in m for two different locations.](http://en.wikipedia.org/wiki/Image:Flag_of_Antarctica.svg)
Example Continued

Graphs showing estimated number of years against depth in meters for different time periods: 0, 10, 30, and 50 years. The graphs illustrate the dating uncertainty with posterior distributions (constrained by LC).
Posterior Distributions (constrained by LC)

Accumulation prior

Accumulation model priors (f linear, Johnsen et al., 1995)

- Accumulation prior
 - $A_i \sim N(-0.5, 1.5^2)$

- Accumulation model priors (f linear)
 - $A_0 \sim N(-0.79, 0.27^2)$
 - Evidence from 11 cores

- Model error prior
 - $\sigma \sim \Gamma(7355, 3.5e-05)$
 - Evidence from 11 cores
Discussion
Current and Future Research

- current research
 - gain better prior knowledge
 - include mechanical model
Current and Future Research

- current research
 - gain better prior knowledge
 - include mechanical model

- future research
 - more complex accumulation models f
 - multicore, multiproxy analysis
 - statistical approach for layer counting (pilot: J. Wheatley)
 → combine
Current and Future Research

- current research
 - gain better prior knowledge
 - include mechanical model

- future research
 - more complex accumulation models
 - multicore, multiproxy analysis
 - statistical approach for layer counting (pilot: J. Wheatley)
 → combine

- problems
 - hard to quantify uncertainty further back in time
 - hiatus: summer melting, ice flow disturbances
Thank you!
Dating Uncertainty in an Example Continued

147.08 ± 9.81 years

