Uncertainty in Dating Ice Cores

Stories from Ice Cores

Katy Klauenberg, Paul Blackwell, Caitlin Buck
Department of Probability and Statistics, The University of Sheffield

Regine Röthlisberger
British Antarctic Survey, Cambridge
Content

- Introduction to Ice Core Dating
 - Ice Cores as Archives
 - Existing Dating methods

- Some Theory
 - Glaciological Model and its Uncertainty
 - Bayesian Statistics

- Results: Dating Uncertainty in a Toy Example

- Discussion
Introduction to Ice Core Dating

- Introduction to Ice Core Dating
- Ice Cores – The Archive
- Existing Dating Methods
- Uncertainty — a Nuisance?
- Uncertainty — a Nuisance?

Theory in a Nutshell

The Dating Uncertainty

Discussion

Introduction to Ice Core Dating
Ice Cores – The Archive

- Preserve valuable information about the climate and environment of the past
- Record chemical composition of snow, dust and atmospheric gases with high resolution for up to 700,000 years and longer [Parrenin et al., 2007]

Source: BAS image database
Ice Cores – The Archive

- Preserve valuable information about the climate and environment of the past
- Record chemical composition of snow, dust and atmospheric gases with high resolution for up to 700,000 years and longer (Parrenin et al., 2007)
- Dating is essential to interpret this information
- Dating: relate time to depth

Source: BAS image database
Ice Cores – The Archive

- Preserve valuable information about the climate and environment of the past
- Record chemical composition of snow, dust and atmospheric gases with high resolution for up to 700,000 years and longer [Parrenin et al., 2007]
- Dating is essential to interpret this information
- Dating: relate time to depth

Source: BAS image database
Existing Dating Methods

- layer counting using seasonality in signals

- glaciological modelling
 - model of accumulation: estimated from isotopic content of ice
 - model of mechanical processes after accumulation: i.e. firn densification, ice flow

- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insulation changes

- any combination of dating methods
Existing Dating Methods

- layer counting using seasonality in signals
- sufficient annual accumulation error accumulates
- glaciological modelling
 - model of accumulation: estimated from isotopic content of ice
 - model of mechanical processes after accumulation: i.e. firn densification, ice flow
 - poorly known parameters
- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insulation changes uncertainty in other record
 - uncertainty in link between records
- any combination of dating methods
Existing Dating Methods

- layer counting using seasonality in signals
 sufficient annual accumulation
 error accumulates
- glaciological modelling
 - model of accumulation:
 estimated from isotopic content of ice
 - model of mechanical processes after accumulation:
 i.e. firn densification, ice flow
 poorly known parameters
- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insulation changes
 uncertainty in other record
 uncertainty in link between records
- any combination of dating methods

⇒ quantify uncertainty in the accumulation model and derive the dating uncertainty
Existing Dating Methods

- layer counting using seasonality in signals
 sufficient annual accumulation
 error accumulates

- glaciological modelling
 - model of accumulation:
 estimated from isotopic content of ice
 - model of mechanical processes after accumulation:
 i.e. firn densification, ice flow
 poorly known parameters

- comparison with other dated records
 - e.g. ice cores, volcanic eruptions, insulation changes
 uncertainty in other record
 uncertainty in link between records

- any combination of dating methods

⇒ quantify uncertainty in the accumulation model and derive
the dating uncertainty
Comparison with other dated records

- Did certain climatic events occur at different locations?
- Were they synchronous?

13,000 yr BP

12,000 yr BP
Comparison with other dated records

- Did certain climatic events occur at different locations?
- Were they synchronous?

![Graph showing probability distributions for cooling events in two records at 13,000 yr BP and 12,000 yr BP.](image)
Comparison with other dated records

- Did certain climatic events occur at different locations?
- Were they synchronous?

⇒ Quantify uncertainty properly!
Theory in a Nutshell
Glaciological Model and its Uncertainty

Accumulation Model

chemical measurement: isotopic content of ice → annual accumulation rate → times covered by each slice of the core
Glaciological Model and its Uncertainty

Accumulation Model

chemical measurement: isotopic content of ice → annual log-accumulation rate → times covered by each slice of the core

\[Y \xrightarrow{f(Y)} T = \frac{g(D)}{e^f(Y)} \]
Glaciological Model and its Uncertainty

Accumulation Model

chemical measurement: isotopic content of ice → annual log-accumulation rate → times covered by each slice of the core

\[Y \rightarrow f(Y) \rightarrow T = \frac{g(D)}{e^{f(Y)}} \]

Its Uncertainty

\[Y \rightarrow f(Y) = A + \varepsilon \rightarrow T = \frac{g(D)}{e^{A}} \]

'observed' log-accumul. rate
\(f \) involves uncertain parameters
model error

'true' log-accumul. rates
Glaciological Model and its Uncertainty

Accumulation Model

- Chemical measurement: isotopic content of ice
- Annual log-accumulation rate
- Times covered by each slice of the core

\[Y \xrightarrow{f(Y)} T = \frac{g(D)}{e^f(Y)} \]

Its Uncertainty

- 'True' log-accumulation rates
- 'Observed' log-accumulation rate
- Model error

\[Y \xrightarrow{f(Y) = A + \epsilon} T = \frac{g(D)}{e^A} \]
Bayesian Statistics

\[f(Y) = A + \varepsilon \]

The model error
(likelihood)

\[f(Y_i | A_i) \sim N(A_i, \sigma^2) \]
Bayesian Statistics

Knowledge from elsewhere
(prior distribution)

\[f(Y) = A + \varepsilon \]

The model error
(likelihood)

\[f(Y_i | A_i) \sim N(A_i, \sigma^2) \]
Bayesian Statistics

Knowledge from elsewhere
(prior distribution)

\[f(Y) = A + \varepsilon \]

The model error
(likelihood)

\[f(Y_i|A_i) \sim N(A_i, \sigma^2) \]

The dating uncertainty
(posterior distribution)

Probability

- Mean annual accum
- True log-accum rate
- Observed log-accum rate
- Other dating
- Depth
- \(\delta^{18}O \)

\(Y_1 Y_2 \ldots Y_i \ldots \)

\(\Delta \Delta \)
Sources of Prior Knowledge

- recent weather records: do not capture climate in polar regions → accumulation model not applicable
- other ice cores: use layer counted (nearby) cores
- same ice core:
 - use $\frac{1}{2}$ of layer counted data to derive prior
 - use $\frac{1}{2}$ of layer counted data to compare our results (to explore the effect of prior assumptions on the dating uncertainty)
The Dating Uncertainty
Effect of Uncertainty in Accumulation

Toy example

A shallow core from Dyer Plateau, Antarctica (70°39’S, 65°01’W)

Accumulation prior

<table>
<thead>
<tr>
<th>Evidence from layer counting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitted distribution</td>
</tr>
</tbody>
</table>

Dating uncertainty

Annual accumulation rate e^A in m

$P(e^A)$

$0.0 \ 0.5 \ 1.0 \ 1.5 \ 2.0$
Effect of Uncertainty in Accumulation

Toy example

A shallow core from Dyer Plateau, Antarctica (70°39’S, 65°01’W)

Accumulation prior

- Evidence from layer counting
- Fitted distribution

Dating uncertainty

- Number of years from layer counting

Fixed parameters:
- Annual accumulation rate e^A in m

Date covered: 47.96 ± 2.20 years
Effect of all Sources of Uncertainty

Introduction to Ice Core Dating

Theory in a Nutshell

The Dating Uncertainty
- Effect of Uncertainty in Accumulation
- Effect of all Sources of Uncertainty

Discussion

Effect of all Sources of Uncertainty

Accumulation prior

Model parameter priors

Dating uncertainty:
47.9 ± 2.5 years

Evidence from layer counting
Fitted distribution

Annual accumulation rate e^A_i in n

Intercept A_0
Slope b

Uncertainty in Dating Ice Cores

Environment Division Symposium: Ice, Water, Land and Air, Sheffield November 17, 2008 - p. 14/17
Discussion
Current and Future Research

- only excerpt of our work
Current and Future Research

- only excerpt of our work
- current research
 - gain better prior knowledge
 - include mechanical model and volcanic eruptions
Current and Future Research

- only excerpt of our work

- current research
 - gain better prior knowledge
 - include mechanical model and volcanic eruptions

- future research
 - more complex accumulation models f
 - multicore, multiproxy analysis
 - statistical approach for layer counting (pilot: J. Wheatley)
 → combine
Current and Future Research

- only excerpt of our work
- current research
 - gain better prior knowledge
 - include mechanical model and volcanic eruptions
- future research
 - more complex accumulation models f
 - multicore, multiproxy analysis
 - statistical approach for layer counting (pilot: J. Wheatley) → combine
- problems
 - hiatus: summer melting, ice flow disturbances
 - hard to quantify uncertainty further back in time
Introduction to Ice Core Dating

Theory in a Nutshell

The Dating Uncertainty

Discussion

Thank you!

Questions and comments ...