Hidden Markov Random Field and FRAME Modelling for TCA Image Analysis

Katy Stresco and Francesco Lagona

www.demogr.mpg.de
Introduction

- Introduction to TCA Image Analysis
- The Model - Hidden Markov Random Field (HMRF)
 - Observable Random Field
 - Markov Random Field (MRF - FRAME)
- Parameter Estimation and Segmentation
 - EM algorithm and MFA
- Results
- Conclusions
Introduction to TCA Image Analysis
TCA Method and Images

- Introduction to TCA Image Analysis
- TCA Method and Images
- TCA image

The Model - HMRF

Subsummary

Parameter Estimation and Segmentation

Results

Conclusions

Thank you!

\[\text{Hoppa and Vaupel, 2002} \]
TCA Method and Images

- age estimation method

[Hoppa and Vaupel, 2002]
TCA Method and Images

- age estimation method

[Hoppa and Vaupel, 2002]
- age estimation method
- inter/intra observer variance and large databases lead to the need of an automatic evaluation

\[\text{[Hoppa and Vaupel, 2002]}\]
- age estimation method
- inter/intra observer variance and large databases lead to the need of an automatic evaluation
- **TCA** images
 - \(\approx 1016 \times 1300\) pixels
 - gray values \([0, 2^8 - 1]\) or \([0, 2^{12} - 1]\)
 - tooth ring roughly 1-3 \(\mu m\) (5-20 pixel) thick

\[^a\text{[Hoppa and Vaupel, 2002]}\]
Introduction to TCA Image Analysis - TCA Method and Images

The Model - HMRF

Subsummary

Parameter Estimation and Segmentation

Results

Conclusions

Thank you!
The Model - HMRF
need to account for long-range dependencies among the observed values
Introduction

- need to account for long-range dependencies among the observed values
- set up a texture model including spatial dependencies
Introduction

- need to account for long-range dependencies among the observed values
- set up a texture model including spatial dependencies
- TCA image evaluation = labelling problem:

\[Y : S \rightarrow \mathbb{R}^{N \times M} \]
with \(i \rightarrow Y_i \)

\[\text{[Li, 2001]} \]
Introduction

- need to account for long-range dependencies among the observed values
- → set up a texture model including spatial dependencies
- TCA image evaluation = labelling problem:

unknown label image

TCA image Y

$Y : S \rightarrow \mathbb{R}^{N \times M}$

with $i \mapsto Y_i$

\[\text{[Li, 2001]}\]
Introduction

- need to account for long-range dependencies among the observed values
- → set up a texture model including spatial dependencies
- TCA image evaluation = labelling problem:

\[
Y : S \leftrightarrow \mathbb{R}^{N \times M} \\
\lambda : S \leftrightarrow \mathcal{G}^{N \times M}
\]

with \(i \) \(\rightarrow \) \(Y_i \) \\
with \(i \) \(\rightarrow \) \(\lambda_i \)

\[\text{Li, 2001}\]
Introduction

- need to account for long-range dependencies among the observed values
- → set up a texture model including spatial dependencies
- TCA image evaluation = labelling problem:

\[Y : \mathcal{S} \rightarrow \mathbb{R}^{N \times M} \]

\[\lambda : \mathcal{S} \rightarrow \mathcal{G}^{N \times M} \]

estimate label image from noise-corrupted observed TCA image

\[a^{[Li, 2001]} \]
- Introduction

Introduction to TCA Image Analysis

The Model - HMRF
- Introduction
- Hidden Markov Random Field
- Markov Random Field Λ
- FRAME
- Simulation Example

Subsummary

Parameter Estimation and Segmentation

Results

Conclusions

Thank you!

Hidden Markov Random Field

- set up a Hidden Markov Random Field (for examplea)
- models \mathcal{Y} as mixture

$$f(Y) = \sum_{\lambda \in \mathcal{G}^{N \times M}} P(\lambda) f(Y | \lambda)$$

a [Zhang et al., 2001]
Hidden Markov Random Field

- set up a Hidden Markov Random Field (for examplea)
 - models \mathcal{Y} as mixture

\[
f(Y) = \sum_{\lambda \in \mathcal{G}^{N \times M}} P(\lambda) f(Y|\lambda)
\]

TCA image Y

\[\mathcal{Y} : S \rightarrow \mathbb{R}^{N \times M}\]

with $i \rightarrow Y_i$

label image λ

\[\Lambda : S \rightarrow \mathcal{G}^{N \times M}\]

with $i \rightarrow \lambda_i$

iid noise ε

\[\varepsilon_i = Y_i - \mu \lambda_i\]

\[f(Y|\lambda) \sim \prod_{i \in S} N(\mu_{\lambda_i}, \sigma_{\lambda_i}^2)\]

a[Zhang et al., 2001]
Hidden Markov Random Field

- set up a **Hidden Markov Random Field** (for example a
 - models \mathcal{Y} as mixture

$$f(Y) = \sum_{\lambda \in \mathcal{G}^{N \times M}} P(\lambda) f(Y | \lambda)$$

TCA image Y

$\mathcal{Y} : S \mapsto \mathbb{R}^{N \times M}$

with $i \mapsto Y_i$

Label image λ

$\Lambda : S \mapsto \mathcal{G}^{N \times M}$

with $i \mapsto \lambda_i$

iid noise ε

$\varepsilon_i = Y_i - \mu \lambda_i$

$P(\lambda | T) \sim \text{MRF}$

$f(Y | \lambda) \sim \prod_{i \in S} N(\mu_{\lambda_i}, \sigma_{\lambda_i}^2)$

a[Zhang et al., 2001]
set up a **Hidden Markov Random Field** (for example\(^a\))

- models \(\mathcal{Y} \) as mixture

\[
f(Y) = \sum_{\lambda \in \mathcal{G}^{N \times M}} P(\lambda) f(Y | \lambda)
\]

\(\mathcal{Y} : S \rightarrow \mathbb{R}^{N \times M} \\
\) with \(i \rightarrow Y_i \)

\(\mathcal{\Lambda} : S \rightarrow \mathcal{G}^{N \times M} \\
\) with \(i \rightarrow \lambda_i \)

\(P(\lambda | T) \sim \text{MRF} \)

\(f(Y | \lambda) \sim \prod_{i \in \mathcal{S}} N(\mu_{\lambda_i}, \sigma^2_{\lambda_i}) \)

\(^a\)Zhang et al., 2001
Hidden Markov Random Field

- set up a **Hidden Markov Random Field** (for example\(^a\))
 - models \(\mathcal{Y} \) as mixture

\[
f(Y) = \sum_{\lambda \in \mathcal{G}^{N \times M}} P(\lambda) f(Y|\lambda)
\]

\[= \mu\]

TCA image \(Y\)

\[\mathcal{Y} : \mathcal{S} \mapsto \mathbb{R}^{N \times M}\]

with \(i \mapsto Y_i\)

Label image \(\lambda\)

\[\Lambda : \mathcal{S} \mapsto \mathcal{G}^{N \times M}\]

with \(i \mapsto \lambda_i\)

IID noise \(\varepsilon\)

\[\varepsilon_i = Y_i - \mu \lambda_i\]

\(^a\)Zhang et al., 2001
Markov Random Field Λ

- incorporates the prior knowledge about the image
- describes probability of each pixel i with the help of its neighbors $N(i)$:

$$P(\lambda_i | \lambda_{S \setminus i}) = P(\lambda_i | \lambda_{N(i)}) \text{ (Markovianity)}$$
Markov Random Field

- incorporates the prior knowledge about the image
- describes probability of each pixel i with the help of its neighbors $N(i)$:

$$P(\lambda_i | \lambda_{S \setminus i}) = P(\lambda_i | \lambda_{N(i)}) \text{ (Markovianity)}$$
Markov Random Field

- incorporates the prior knowledge about the image
- describes probability of each pixel \(i \) with the help of its neighbors \(N(i) \):
 \[
P(\lambda_i | \lambda_{S \setminus i}) = P(\lambda_i | \lambda_{N(i)}) \quad \text{(Markovianity)}
\]

- FRAME
 - Filters, Random Fields and Maximum Entropy \(^a\)

\(^a\)[Zhu and Mumford, 1997],[Zhu et al., 1997],[Zhu et al., 1998]
Markov Random Field Λ

- incorporates the prior knowledge about the image
- describes probability of each pixel i with the help of its neighbors $N(i)$:
 \[
P(\lambda_i | \lambda_{S \setminus i}) = P(\lambda_i | \lambda_{N(i)}) \text{ (Markovianity)}
 \]

- FRAME
 - Filters, Random Fields and Maximum Entropy a
 - assume Λ is Gibbs distributed according to
 \[
P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]}
 \]
 \[
 \text{norm. const.}
 \]

a[Zhu and Mumford, 1997],[Zhu et al., 1997],[Zhu et al., 1998]
Markov Random Field \(\Lambda \)

- incorporates the prior knowledge about the image
- describes probability of each pixel \(i \) with the help of its neighbors \(N(i) \):
 \[
P(\lambda_i | \lambda_{S \setminus i}) = P(\lambda_i | \lambda_{N(i)}) \quad \text{(Markovianity)}
\]

- FRAME
 - Filters, Random Fields and Maximum Entropy \(^a\)
 - assume \(\Lambda \) is Gibbs distributed according to
 \[
P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]}
\]
 norm. const.

 - filter response \((F_T \ast \lambda)(i)\) measures similarity of the neighborhood of each pixel to the filter

\(^a\) [Zhu and Mumford, 1997], [Zhu et al., 1997], [Zhu et al., 1998]
Markov Random Field \(\Lambda \)

- incorporates the prior knowledge about the image
- describes probability of each pixel \(i \) with the help of its neighbors \(N(i) \):

\[
P(\lambda_i | \lambda_{S \setminus i}) = P(\lambda_i | \lambda_{N(i)}) \quad \text{(Markovianity)}
\]

- FRAME

- Filters, Random Fields and Maximum Entropy \(^a\)
- assume \(\Lambda \) is Gibbs distributed according to

\[
P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T * \lambda)(i)]}
\]

- norm. const.

- filter response \((F_T * \lambda)(i) \) measures similarity of the neighborhood of each pixel to the filter
- potential function \(\phi \) evaluates the filter responses

\(^a\)[Zhu and Mumford, 1997],[Zhu et al., 1997],[Zhu et al., 1998]
\[
P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]}
\]

- elegantly combines MRF modelling and filtering theory
\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T * \lambda)(i)]} \]

- elegantly combines MRF modelling and filtering theory
- may be applied to a wide variety of even large scale textures because \(F_T \) accounts for long-range dependencies
\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

- elegantly combines MRF modelling and filtering theory
- may be applied to a wide variety of even large scale textures because \(F_T \) accounts for long-range dependencies
- Filter Family and Potential Function Specification
 - application driven
FRAME

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

- elegantly combines MRF modelling and filtering theory
- may be applied to a wide variety of even large scale textures because \(F_T \) accounts for long-range dependencies
- Filter Family and Potential Function Specification
 - application driven
 - use the real part of 2-D Gabor functions

\[G_{\cos T, \alpha}(x, y) = c \cdot e^{-\frac{(x' \cos \alpha + y' \sin \alpha)^2}{2T^2}} \cos \left(\frac{2\pi x'}{T} \right) \]

\[x' = x \cos \alpha + y \sin \alpha \]
\[y' = -x \sin \alpha + y \cos \alpha \]
FRAME

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \lambda)(i)]} \]

- elegantly combines MRF modelling and filtering theory
- may be applied to a wide variety of even large scale textures because \(F_T \) accounts for long-range dependencies
- Filter Family and Potential Function Specification
 - application driven
 - use the real part of 2-D Gabor functions
 \[G_{\cos T, \alpha}(x, y) = c \cdot e^{-\left(\frac{(x'\cos \alpha + y'\sin \alpha)^2 + (y'\cos \alpha + x'\sin \alpha)^2}{2T^2}\right)} \cos \left(\frac{2\pi}{T} x'\right), \quad \begin{align*} x' &= x \cos \alpha + y \sin \alpha \\ y' &= -x \sin \alpha + y \cos \alpha \end{align*} \]
 - e.g. \(T = 16, \ \alpha = 0 \)
FRAMES

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \star \lambda)(i)]} \]

- elegantly combines MRF modelling and filtering theory
- may be applied to a wide variety of even large scale textures because \(F_T \) accounts for long-range dependencies

Filter Family and Potential Function Specification
- application driven
- use the real part of 2-D Gabor functions

\[G_{\cos T, \alpha}(x, y) = c \cdot e^{-\frac{(rx'^2+y'^2)}{2T^2}} \cos \left(\frac{2\pi}{T} x' \right), \quad x' = x \cos \alpha + y \sin \alpha, \quad y' = -x \sin \alpha + y \cos \alpha \]

- e.g. \(T = 16, \ \alpha = 0 \)
- convolution \((F_T, \alpha \ast \lambda) \) captures lines of width \(T \) and orientation \(\alpha \)
- choose \(T = \{2, 4, 6, \ldots, 18\} \), fix \(\alpha = 0 \)
\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

- elegantly combines MRF modelling and filtering theory
- may be applied to a wide variety of even large scale textures because \(F_T \) accounts for long-range dependencies
- Filter Family and Potential Function Specification
 - application driven
 - use the real part of 2-D Gabor functions
 \[
 G_{\cos T, \alpha}(x, y) = c \cdot e^{\frac{-(r x' \cos \alpha + y \sin \alpha)^2}{2 T^2}} \cos \left(\frac{2\pi}{T} x' \right), \quad x' = x \cos \alpha + y \sin \alpha, \quad y' = -x \sin \alpha + y \cos \alpha
 \]
 - e.g. \(T = 16, \; \alpha = 0 \)
 - convolution \((F_T, \alpha \ast \lambda) \) captures lines of width \(T \) and orientation \(\alpha \)
 - choose \(T = \{2, 4, 6, \ldots, 18\} \), fix \(\alpha = 0 \)
 - choose simplest cup shaped potential function \(\phi = |.| \)
Simulation Example

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi(F_T * \lambda)(i)} \]
Simulation Example

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]
Simulation Example

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

Gibbs sampler

prior knowledge ('ideal' TCA image)
Simulation Example

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

Gibbs sampler

prior knowledge ('ideal' TCA image)

REMARK: we don’t want to synthesize perceptual equivalent images but focus on one feature (one filter with one potential function)
Subsummary
Subsummary

TCA Image

\[f(Y) = \sum_{\lambda \in G^{N \times M}} P(\lambda) f(Y | \lambda) \]

\[P(\lambda) = \frac{1}{Z} e^{-\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

\[f(Y | \lambda) = \prod_{i \in S} \frac{1}{\sqrt{2\pi\sigma_{\lambda_i}}} e^{-\frac{(Y_i - \mu_{\lambda_i})^2}{2\sigma^{2}_{\lambda_i}}} \]
Subsummary

TCA Image → HMRF

\[f(Y) = \sum_{\lambda \in \mathcal{G}^{N \times M}} P(\lambda) f(Y|\lambda) \]

MRF

FRAME

Gaussian

\[P(\lambda) = \frac{1}{Z} e^{\sum_{i \in S} \phi[(F_T \ast \lambda)(i)]} \]

\[f(Y|\lambda) = \prod_{i \in S} \frac{1}{\sqrt{2\pi}\sigma_{\lambda_i}} e^{-\frac{(Y_i - \mu_{\lambda_i})^2}{2\sigma_{\lambda_i}^2}} \]

EM with MFA \[\hat{\theta}, \hat{T} \]

Label Image
Parameter Estimation and Segmentation
Using EM

- estimate parameters of observable random field: \(\theta = \{ \mu_g, \sigma_g^2 \mid g \in G \} \)
and of MRF: \(T \)
Using EM

- estimate parameters of observable random field: $\theta = \{\mu_g, \sigma^2_g | g \in \mathcal{G}\}$
and of MRF: T

- MLE $\{\hat{\theta}, \hat{T}\} = \arg \max_{\{\theta, T\}} L(\theta, T|Y)$

 intractable, because $L(\theta, T|Y) = \sum_{\lambda \in \mathcal{G}^N \times \mathcal{M}} P(\lambda|T)f(Y|\lambda, \theta)$
Using EM

- estimate parameters of observable random field: \(\theta = \{\mu_g, \sigma_g^2 | g \in \mathcal{G} \} \)

and of MRF: \(T \)

- MLE \(\{\hat{\theta}, \hat{T}\} = \arg \max_{\{\theta, T\}} L(\theta, T | Y) \)

intractable, because \(L(\theta, T | Y) = \sum_{\lambda \in \mathcal{G}^N \times \mathcal{M}} P(\lambda | T) f(Y | \lambda, \theta) \)
Using EM

- estimate parameters of observable random field: $\theta = \{\mu_g, \sigma^2_g | g \in G\}$ and of MRF: T
- MLE\[\{\hat{\theta}, \hat{T}\} = \arg \max_{\{\theta,T\}} L(\theta, T|Y)\]

intractable, because $L(\theta, T|Y) = \sum_{\lambda \in G^{N \times M}} P(\lambda|T)f(Y|\lambda, \theta)$

- EM\[^{a}\]
 - focusses on complete-data likelihood $L(\theta, T|Y, \lambda)$
 - iterates between
 1.) E-step: $E \left[\log P(Y, \lambda|\theta, T)|Y, \theta^{(t-1)}, T^{(t-1)} \right]$
 2.) M-step:{\{\theta^{(t)}, T^{(t)}\}} = \arg \max_{\{\theta,T\}} E \left[\log P(Y, \lambda|\theta, T)|Y, \theta^{(t-1)}, T^{(t-1)} \right]$

 - for Gaussian random field this reduces to three updating formulas

\[^{a}\] [McLachlan and Krishnan, 1997], [Zhang et al., 2001]
Using EM and MFA

\[\mu_{g}^{(t)} = \frac{\sum_{i \in S} Y_i P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)} \]

\[\left(\sigma_{g}^{(t)} \right)^2 = \frac{\sum_{i \in S} \left(Y_i - \mu_{g}^{(t)} \right)^2 P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)} \]

\[T^{(t)} = \arg \max_{\{T\}} \sum_{i \in S} \sum_{g=0}^{G} \log P \left(\lambda_i = g | \lambda_{N(i)}, T \right) P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right) \]
Using EM and MFA

\[
\mu_{g}^{(t)} = \frac{\sum_{i \in S} Y_{i} P \left(\lambda_{i} = g | Y_{i}, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_{i} = g | Y_{i}, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}
\]

\[
\left(\sigma^{(t)}_{g} \right)^{2} = \frac{\sum_{i \in S} \left(Y_{i} - \mu_{g}^{(t)} \right)^{2} P \left(\lambda_{i} = g | Y_{i}, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_{i} = g | Y_{i}, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}
\]

\[
T^{(t)} = \arg \max \sum_{\{T\}} \sum_{i \in S} \sum_{g=0}^{G} \log P \left(\lambda_{i} = g | \lambda_{N(i)}, T \right) P \left(\lambda_{i} = g | Y_{i}, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)
\]

- posterior probabilities not available and MCMC simulation not feasible (because of \(G^{N \times M} \) and size of \(N(i) \))
Using EM and MFA

\[\mu_g^{(t)} = \frac{\sum_{i \in S} Y_i P \left(\lambda_i = g \middle| Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_i = g \middle| Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)} \]

\[(\sigma_g^{(t)})^2 = \frac{\sum_{i \in S} \left(Y_i - \mu_g^{(t)} \right)^2 P \left(\lambda_i = g \middle| Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_i = g \middle| Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)} \]

\[T^{(t)} = \arg \max_{\{T\}} \sum_{i \in S} \sum_{g=0}^G \log P(\lambda_i = g \middle| \lambda_{N(i)}, T) P(\lambda_i = g \middle| Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)}) \]

- posterior probabilities not available and MCMC simulation not feasible (because of $G^{N \times M}$ and size of $N(i)$)
- approximate in $P(\lambda|Y) \propto P(\lambda)f(Y|\lambda)$ the prior probability using mean field theory \(^{\text{Celeux et al., 2003}}\)

\[P(\lambda) \approx \prod_{i \in S} P \left(\lambda_i | E[\lambda_{N(i)}] \right) \]
Using EM and MFA

\[\mu_g^{(t)} = \frac{\sum_{i \in S} Y_i P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}\]

\[\left(\sigma_g^{(t)} \right)^2 = \frac{\sum_{i \in S} \left(Y_i - \mu_g^{(t)} \right)^2 P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}{\sum_{i \in S} P \left(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)} \right)}\]

\[T(t) = \arg \max \sum_{\{T\}} \sum_{i \in S} \sum_{g=0}^{G} \log P(\lambda_i = g | \lambda_{N(i)}, T) P(\lambda_i = g | Y_i, \lambda_{N(i)}, \theta^{(t-1)}, T^{(t-1)})\]

- posterior probabilities not available and MCMC simulation not feasible (because of \(G^{N \times M}\) and size of \(N(i)\))
- approximate in \(P(\lambda | Y) \propto P(\lambda) f(Y | \lambda)\) the prior probability using mean field theory\(^a\)
 \[P(\lambda) \approx \prod_{i \in S} P(\lambda_i | E[\lambda_{N(i)}])\]
- EM iterates between updating \(E[\lambda]\) and parameters

\(^a\) Celeux et al., 2003
Results
Results - MFA

- fit the Gaussian hidden FRAME model to TCA image
- use $\mathcal{G} = \{0, 1\}$ (black and white rings)
- MFA of cementum band at last iteration ($\hat{T} = 14$)
Results - MFA

- fit the Gaussian hidden FRAME model to TCA image
- use $\mathcal{G} = \{0, 1\}$ (black and white rings)
- MFA of cementum band at last iteration ($\hat{T} = 14$)
Results - tooth ring count

- expected # rings: 33.61
- recognized: 35
Results - tooth ring count

- expected # rings: 33.61
 recognized: 35
- additional TCA images

<table>
<thead>
<tr>
<th>Image</th>
<th>Number of Rings</th>
<th>Expected</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-000</td>
<td></td>
<td>0231</td>
<td>40.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0592</td>
<td>60.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0682</td>
<td>35.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0688</td>
<td>35.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1157</td>
<td>34.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1225</td>
<td>40.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1547</td>
<td>38.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1692</td>
<td>34.39</td>
</tr>
</tbody>
</table>
Results - tooth ring count

- expected # rings: 33.61
 recognized: 35

- additional TCA images

<table>
<thead>
<tr>
<th>image</th>
<th>number of rings</th>
<th>expected</th>
<th>estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0231</td>
<td></td>
<td>40.94</td>
<td>46</td>
</tr>
<tr>
<td>0592</td>
<td></td>
<td>60.39</td>
<td>64</td>
</tr>
<tr>
<td>0682</td>
<td></td>
<td>35.44</td>
<td>33</td>
</tr>
<tr>
<td>0688</td>
<td></td>
<td>35.44</td>
<td>34</td>
</tr>
<tr>
<td>1157</td>
<td></td>
<td>34.39</td>
<td>30</td>
</tr>
<tr>
<td>1225</td>
<td></td>
<td>40.94</td>
<td>46</td>
</tr>
<tr>
<td>1547</td>
<td></td>
<td>38.19</td>
<td>28</td>
</tr>
<tr>
<td>1692</td>
<td></td>
<td>34.39</td>
<td>34</td>
</tr>
</tbody>
</table>

- bad detection of rings
Conclusions
Conclusions

- aim: estimate the number of tooth rings in TCA images
Conclusions

- aim: estimate the number of tooth rings in TCA images

- methods
 - set up a Gaussian hidden FRAME model
 - exploited the EM algorithm and mean field approximation for parameter estimation
 - estimated the label image

- results
 - fitted model with long-range dependencies to large images
 - good estimate for the number of tooth rings in selected TCA images
 - bad detection of many tooth rings

1.) single filter F_T

 - model can only take into account strong local changes
 - BUT: local estimation of F_T at each pixel leads to biased results (destroys neighborhood relationship)

2.) fixation of orientation $\phi = 0$

 - leads to bifurcations
Conclusions

- aim: estimate the number of tooth rings in TCA images
- methods
 - set up a Gaussian hidden FRAME model
 - exploited the EM algorithm and mean field approximation for parameter estimation
 - estimated the label image
- results
 - fitted model with long-range dependencies to large images
 - good estimate for the number of tooth rings in selected TCA images
 - bad detection of many tooth rings
 1.) single filter $F_T \rightarrow$ model can only take into account strong local changes
 BUT: local estimation of F_T at each pixel leads to biased results (destroys neighborhood relationship)
 2.) fixation of orientation $\alpha = 0$ leads to bifurcations
Conclusions II

- future research
 - calculate standard errors
 - test different approximations of posterior probability (e.g. mode field approximationa)
 - analyze more TCA images
 - fit correlated hidden Markov Chains

a[Celeux et al., 2003]
Conclusions II

- future research
 - calculate standard errors
 - test different approximations of posterior probability (e.g. mode field approximation\(^{a}\))
 - analyze more TCA images
 - fit correlated hidden Markov Chains

- acknowledgements
 - members of MPI DR tooth lab: A. Fabig and U. Cleven
 - supervisor at the MPI DR: F. Lagona

\(^{a}\)[Celeux et al., 2003]
Thank you!
Bibliography

